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Supplementary Figure 1: Effects of magnetic field on various quantities. Various real-space
r images taken in the same 380 × 380 Å2 area. (a-e) Topographic image, differential conductance map
g(r, E,B) at energy E = +10 meV, conductance ratio map Z(r, E = 10 meV, B), conductance ratio map
Z(r, e = 1, B) at the pseudogap energy ∆1 (e ≡ E/∆1) and the gap map ∆1(r, B), respectively, in the
absence of magnetic field B. The scale bars correspond to 50 Å. The color scales are in Å for a, in nS for b,
in arbitrary units for c and d, and in meV for e. Black arrows in a denote the Cu-O bonding directions.
(f -j) Same as (a) to (e) except that B = 11 T. (k-o) Difference images obtained by subtracting the
results at B = 0 T from those at B = 11 T. Although an apparent B-induced enhancement of ∆1(r, B)
is observed in some of the vortex cores, changes in the original g(r, E,B) spectra near ∆1(r, B) are very
small; due to small dg(r, E,B)/dE at E ∼ ∆1(r, B), small change in g(r, E,B) gives rise to large effect
on the estimation of ∆1(r, B). We have used ∆1(r, B = 0 T) to create both of Z(r, e = 1, B = 0 T) and
Z(r, e = 1, B = 11 T) maps.
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Supplementary Figure 2: Definition of vortex and matrix regions. (a) Difference between the
two conductance g maps in real space r at magnetic field B = 0 T and 11 T; δg(r, E = +10 meV) ≡
g(r, E = +10 meV, B = 11 T) − g(r, E = +10 meV, B = 0 T), where E denotes energy. The scale bar
corresponds to 50 Å. The color scale is in nS. (b) Low-pass filtered image of a; LPF-δg(r, E = +10 meV).
A cut-off wavevector is chosen to be 0.05 × 2π/a0 in the filtering process, where a0 denotes Cu-O-Cu
distance. Corresponding spatial resolution is indicated by a black circle and an arrow. Red dashed, blue
dashed, and yellow lines are the contours with the value of 65, 8, 35% of the difference between the
maximum and minimum values of this image, respectively. (c) Vortex and matrix regions in which the
spectra are spatially averaged for comparison. Red and blue regions denote vortex and matrix regions
and are defined as the regions surrounded by the red and blue dashed lines in b. (d) A mask used to
extract the field-effect on the nanostripe that appears in the conductance ratio map Z(r, e = 1, B) at the
pseudogap energy ∆1 (e ≡ E/∆1). White and black regions denote the vortex and matrix regions, which
are separated by the yellow contours in b. (e, f) Masked conductance ratio maps at e = 1 in B = 0 T
and 11 T, respectively.
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Supplementary Figure 3: Spatial variation of tunneling spectra around a single vortex core.
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Supplementary Figure 3: Spatial variation of tunneling spectra around a single vortex core.
(a) Differential conductance map g in real space r at energy E = +10 meV and magnetic field B = 11 T.
The scale bar corresponds to 50 Å. (b) Magnified image of the area marked by a white box in a. The
color scales of a and b are in nS. Tunneling spectra taken along 8 troughs (c-j) and 10 crests (k-t) of the
vortex checkerboard shown in b. Each spectrum is offset for clarity. Bottom most spectra correspond
to the starting points of the arrows drawn in b. Blue and red curves denote the tunneling spectra at
B = 0 T and 11 T, respectively.
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Supplementary Figure 4: Bogoliubov quasiparticle interference analyses based on the octet
model. (a) Schematic illustration of the momentum-space electronic structure. White and gray areas
indicate the regions with the opposite signs of the d-wave superconducting gap. Black and gray solid
lines represent normal-state Fermi surface and constant energy contours of the Bogoliubov quasiparticle
dispersion. Green bold lines denote constant energy contours at a representative energy. Black dashed
circles correspond to the eight high density-of-states regions, which primarily contribute the Bogoliubov
quasiparticle interference (BQPI) at a given energy E. Red and blue arrows indicate sign-reversing and
sign-preserving scattering vectors, respectively 1. (b) Energy dependence of the absolute value of the
observed wavevectors qi’s at magnetic field B = 0 T (open symbols) and 11 T (solid symbols). Error bars
denote the average of two full widths at half maxima (σx and σy) of the fitted two-dimensional Lorentzian
functions. Dashed and solid lines denote the expected dispersions at B = 0 T and 11 T, respectively.
These dispersions are determined from pairs of (q2, q6) and (q3, q7). (c) Fermi surface loci obtained
from BQPI peak locations qi(E), at B = 0 T (open symbols) and 11 T (solid symbols). Locations of
green and orange circles are obtained from pairs of (q2, q6) and (q3, q7), respectively. Blue and red
circles represent the average of them. Error bars are estimated from the full widths at half maxima of
the fitted two-dimensional Lorentzian functions using the error propagation formula. Blue dashed and
red solid lines denote the results of quarter circle fitting. (d) Fermi-surface angle θ dependence of the
superconducting gap at B = 0 T (blue symbols) and 11 T (red symbols). Data shown by green and orange
circles are estimated from pairs of (q2, q6) and (q3, q7), respectively. Blue and red circles represent the
average of them. These data are fitted to ∆(θ) = ∆BQPI[A cos(2θ)+(1−A) cos(6θ)] as shown by the solid
curves. Here, ∆(θ) and ∆BQPI denote the gap amplitude at θ and the hypothetical maximum energy of
the Bogoliubov quasiparticle excitation, respectively.
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Supplementary Figure 5: Extinction of the Bogoliubov quasiparticle interference pattern
at high energies. (a-e) Conductance-ratio maps in scattering-vector q space Zq(q, E,B) in the absence
of magnetic field B at energies E = 5, 10, 20, 30, and 40 meV, respectively. (f -j) Same as a-e, except
that B = 11 T. (k-o) Difference images, which are obtained by subtracting the results at B = 0 T from
those at B = 11 T. Clear Bogoliubov quasiparticle interference patterns diminish above E ∼ 30 meV.
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Supplementary Figure 6: Spatial correlations between vortices and quantities associated
with the pseudogap. (a) Difference between the two conductance maps g in real space r taken at energy
E = +10 meV in magnetic fields B = 0 T and 11 T; δg(r, E,B = 11 T) ≡ g(r, E,B = 11 T)−g(r, E,B =
0 T). Black dashed circles mark the vortices. The scale bar corresponds to 50 Å. The color scale is in
nS. (b) Low-pass filtered image of a; LPF-δg(r, E = +10 meV). A cut-off wavevector is chosen to
be 0.05 × 2π/a0 in the filtering process, where a0 denotes Cu-O-Cu distance. Corresponding spatial
resolution is indicated by a black circle and an arrow. (c) Azimuthally averaged cross-correlations for
pairs of [LPF-δg(r), ∆1(r)] (Green curve), and [LPF-δg(r), Z(r)] (Red curve), and [LPF-δg(r), AS(r)]
(Blue curve). Here, ∆1(r) is the gap map in B = 0 T (d), Z(r) is the conductance ratio map at E = ∆1(r)
(e ≡ E/∆1=1) in B = 0 T (e) and AS(r) denotes the spatial variation of the nanostripe amplitude at
e = 1 in B = 0 T (f). We define the nanostripe amplitude as the sum of the local amplitudes of
modulations at the wavevectors Sx ∼ 3/4× (2π/a0, 0) and Sy ∼ 3/4× (0, 2π/a0). Dashed circles in these
figures represent the locations of the vortices. Note that vortices tend to be pinned at the locations with
large ∆1(r), Z(r), and AS(r) in the absence of B.
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Supplementary Figure 7: Nanostripe intensity maximizes at the pseudogap energy. Nor-
malized energy e dependence of the nanostripe intensities in magnetic fields B = 0 T and 11 T. Here,
e ≡ E/∆1, where E and ∆1 are energy and the pseudogap energy, respectively. The nanostripe intensities
are defined as the Fourier amplitudes at the wavevectors Sx ∼ 3/4× (2π/a0, 0) and Sy ∼ 3/4× (0, 2π/a0)
in the conductance ratio map in scattering-vector q space Zq(q, e, B). Here, a0 denotes Cu-O-Cu dis-
tance. We performed analyses in different regions; all region (a), near vortices (b) and matrix region (c).
Intensities are normalized according to the areas of the corresponding regions. Nanostripe intensity takes
maximum at e = 1 and is enhanced by B in the vortex region.



Supplementary Note 1 - BQPI analyses based on the octet model

BQPI brings about LDOS modulations which are reflected on g(r, E,B). However, in actual fact
g(r, E,B) may also contain extrinsic modulations caused by the set-point effect 2,3. The set-point effect
can be largely suppressed in Z(r, E,B), which we utilize throughout this work. The analysis of Z(r, E,B)
has another advantage in that Z(r, E,B) picks up the particular modulations in which q(+|E|) = q(−|E|)
and the phase difference between the q(+|E|) and q(−|E|) modulations is large (∼ π). These features
are exactly what are expected in the BQPI 3,4.

We use the octet model to analyze the BQPI seen in Zq(q, E,B); the Fourier transformed Z(r, E,B) 5–7.
Here, the seven scattering vectors qi (i = 1, 2,· · · , 7) connecting the eight tips of the banana-shaped
constant contours in momentum space govern the BQPI because the joint density of states takes max-
imum for these wavevectors (Supplementary Fig. 4a). As shown in Fig. 2a,b of the main text and in
Supplementary Fig. 5, a set of energy-dispersive wavevectors are detected in Zq(q, E,B) and each of the
wavevectors can be assigned to one of the octet wavevectors qi. The intensities at q4 and q5 are weak,
being consistent with the previous reports 8,9.

To determine the precise locations of qi’s at B = 0 T and 11 T, we fit the peaks in Zq(q, E,B) with
the two-dimensional Lorentzian function plus linear background;

f(qx, qy) = f0 +
A(

qx−qx0
σx

)2

+
(
qy−qy0
σy

)2

+ 1
+ cxqx + cyqy, (1)

where f0, cx, and cy are the fitting parameters associated with the linear background, whereas A, qx0,
qy0, σx, and σy are the fitting parameters corresponding to the amplitude, the qx and qy components
of the peak location, and the qx and qy components of the half width at half maximum of the peak,
respectively. Supplementary Figure 4b shows the energy dependence of the absolute value of the observed
qi’s. The signals at q2, q3, q6, and q7 diminishes at about 30 meV, which set the extinction energy
∆0 (Supplementary Fig. 4b,d, Supplementary Fig. 5). At E > ∆0, signals at q1 and q5 are still there
but lose their energy dependence. The signal near q5 turns into S, which is one of the ingredients of the
nanostripe.

We obtain the normal-state Fermi surface and the superconducting gap dispersion using pairs of (q2,
q6) and (q3, q7). Supplementary Figure 4c depicts the Fermi-surface loci that sustain coherent Bogoliubov
quasiparticles. They are limited inside the diagonal line connecting (π/a0,0) and (0, π/a0) 8 and are hardly
affected by a magnetic field. By contrast a magnetic field suppresses the near-nodal superconducting gap
as shown in Supplementary Fig. 4d. These features are consistent with the behaviors observed in a
different cuprate superconductor Ca2−xNaxCuO2Cl2

1 and can be associated with the Volovik effect 10.
In order to check the validity of the octet model especially in a magnetic field, we have performed the

following analyses. First, we fit the Fermi-surface loci to the quarter circle. Next, the superconducting
gap dispersions ∆(θ) are fitted by the following d-wave form with an higher-order term.

∆(θ) = ∆BQPI[A cos(2θ) + (1−A) cos(6θ)]. (2)

Here, θ represents the Fermi-surface angle defined in Supplementary Fig. 4c and ∆BQPI and A are
fitting parameters. Using the obtained fitting parameters, the energy dispersions of all the qi’s can
be calculated and plotted in Supplementary Fig. 4b and in Fig. 2d,e of the main text. The vortex
checkerboard is characterized by the field-enhanced signal at q1. We note that the energy dispersion of
q1 at B = 11 T well coincides with the calculated one, as in the case at B = 0 T. Together with the fact
that the q4 and q5 are also consistent with the calculated dispersions, we conclude that the field-induced
change in the electronic state can be explained in the framework of the octet model as long as E < ∆0.

Supplementary Note 2 - Possible origins of the enhanced q1 modulations

The applicability of the octet model implies that the observed electronic-state modulations are associated
with the Bogoliubov quasiparticles that reside on the near-nodal Fermi surface. There is more than one
origin to cause such Friedel-type oscillations. Most naively, the enhanced quasiparticle scattering off
vortices may result in the enhanced q1

1. Another possible origin is the spatial oscillations of the vortex
bound state in the quantum-limit vortex core 11, as proposed by Yoshizawa and coworkers 12. This model



naturally explains the peaks in the spectrum at ∼ ±10 meV as the discrete bound states. Nevertheless,
more studies are necessary to verify the validity of the bound-state scenario, because it is not clear
whether the vortex of a cuprate is in the quantum limit and the formation of the vortex bound state in
a d-wave superconductor is still a controversial issue 13,14.

Supplementary Note 3 - Vortex pinning and the competition between the
nanostripe and superconductivity

It is interesting to examine the relationship between the locations of vortices and the various electronic
heterogeneities, since this comparison may give us a hint to identify the elementary process of the vortex
pinning. Although previous SI-STM studies have suggested that vortices in Bi2Sr2CaCu2O8+δ tend to be
pinned at the regions where the ∆1(r) is large 12,15, these experiments were conducted only in a field and
thereby could not exclude the possibility that the the pseudogap itself would be influenced by vortices.
Here we compare the locations of vortices with the zero-field electronic heterogeneity at ∆1(r).

Using the same procedure described in Methods section in the main text, we first identify the locations
of vortices (Supplementary Fig. 6a,b). We examine the azimuthally averaged cross-correlation function
(Supplementary Fig. 6c) between the smoothed vortex map shown in Supplementary Fig. 6b and three
different spectroscopic images at ∆1(r): spatial variation of ∆1(r) itself (Supplementary Fig. 6d), Z(r, e =
1, B) (Supplementary Fig. 6e), and the local amplitude of the broken-translational-symmetry state of the
nanostripe, which is nothing but the local amplitude of the modulations at Sx,y (Supplementary Fig. 6f).
Here, we define the local amplitude of these modulations AS(r) as follows,

AS(r) ≡ A(Sx, r) +A(Sy, r),

A(Sν , r) ≡
∑
r′

Z(r′)eiSν ·rfΛ(r′ − r)

≈ 1√
N

∑
k

Z̃(Sν − k)eik·re−k
2/2Λ2

(ν = x or y), (3)

where fΛ(r) = (Λ2/2π)e−Λ2|r|2/2, 1/Λ is the cut-off length scale, and Z̃ is the complex Fourier transform
of Z(r, e = 1, B). As shown in Supplementary Fig. 6c, all of these quantities exhibit strong correlations
with the locations of vortices. Since vortices are generally pinned at weakly superconducting regions,
these results suggest that at least one of these quantities would represent the fundamental measure of
the weakness of superconductivity. Although the microscopic mechanism of vortex pinning is unclear
at present, the observed correlation between the vortex location and AS(r) clearly indicates that the
superconductivity is weak in the region where the nanostripe is prominent, indicating the competition
between superconductivity and the nanostripe in Bi2Sr2CaCu2O8+δ.

Supplementary Note 4 - Energy dependence of the intensity of the nanostripe

To identify the characteristic energy scale of the nanostripe, we study the normalized-energy e = E/∆1

dependence of the nanostripe intensities defined as the Fourier amplitudes around Sx and Sy in Fig. 3.
As shown in Supplementary Fig. 7, the nanostripe intensities gradually grow from about e = 0.5 and take
maximum around e = 1, suggesting the intimate connection between the nanostripe and the pseudogap.
A similar behavior has also been observed in the previous works 9,16. It should be noted that the intensity
is apparently enhanced by a magnetic field. This enhancement is more pronounced in the vortex region
and quite small in the matrix region, indicating that the field enhancement is confined in the vortex core.
This manifests the competition between the superconductivity and the nanostripe that is associated with
the pseudogap state.
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